IPv6 Challenge

Fernando Gont

AIS 2017 Hackathon
Nairobi, Kenya. May 27-28, 2017
About...

- Security Researcher and Consultant at SI6 Networks
- Published:
 - 20 IETF RFCs (9 on IPv6)
 - 10+ active IETF Internet-Drafts
- Author of the SI6 Networks' IPv6 toolkit
- I have worked on security assessment of communication protocols for:
 - UK NISCC (National Infrastructure Security Co-ordination Centre)
 - UK CPNI (Centre for the Protection of National Infrastructure)
Agenda

- Discuss two recent IETF RFCs (RFC6946 & RFC8021)
- Test their implementation
- Then:
 - Document the tests in an IETF Internet-Draft, **OR**,
 - Produce an implementation of such RFCs in open source OSes
Brief introduction to IPv6
IPv4 address exhaustion

- The Internet relies on unique addresses for host communication.
- More than 20 years ago it was already evident we'd eventually run out of IPv4 addresses.
- Network Address Translators (NATs) have served as a stop-gap.
- But nevertheless we're hitting IPv4 address exhaustion.
IPv4 address exhaustion (II)

- IPv4 address exhaustion, as predicted by Geoff Huston
So... what is this “IPv6” thing about?

- It addresses the problem of IPv4 address exhaustion
- Employs 128-bit addresses (vs. IPv4's 32-bit addresses)
- Provides the same service as IPv4
- It is not backwards-compatible with IPv4
So... what is this “IPv6” thing about? (II)

- We can connect IPv6 islands across the IPv4 Internet with tunnels
So... what is this “IPv6” thing about? (III)

- We can interconnect IPv6-only hosts with IPv4-only hosts with “translators”
So... what is this “IPv6” thing about? (IV)

- For every domain name, the DNS can contain
 - A resource records (IPv4 addresses)
 - AAAA (Quad-A) resource records (IPv6 addresses)
- Host may query for A and/or AAAA resource records according to different criteria
- Based on the available resource records, supported protocols, and local policy, IPv6 and/or IPv4 could be employed
Current state of affairs: Implementation

- General-purpose OSes have shipped with IPv6 support for a long time
 - part of your network is already running IPv6!
- Other devices may require updates or replacement:
 - CPE's
 - Firewalls
 - Routers
 - NIDSs
 - etc.
Current state of affairs: Deployment

- IPv6 was essentially **ignored for years**
- Many organizations have now started to take IPv6 more seriously, partly as a result of:
 - Exhaustion of the IANA IPv4 free pool
 - Imminent exhaustion of the address pool at the different RIRs
 - Awareness activities ("World IPv6 Day" & "World IPv6 Launch Day")
 - Main content providers (Google, Facebook, Yahoo, etc.) have deployed IPv6 on their public-facing servers
Current state of affairs: Deployment (II)

- IPv6 usage as measured by Google:
Current state of affairs: Deployment (III)

- IPv6 deployment per country
IPv6 tools
THC-IPv6 Toolkit: Introduction

• First and only IPv6 attack toolkit for many years
• Easy to use
 • Only minimal IPv6 knowledge required
• Features:
 • Only runs on Linux with Ethernet
 • Free software
 • Lacks of comprehensive documentation
• Available at: http://www.thc.org/thc-ipv6
SI6 Networks' IPv6 Toolkit

• Brief history:
 • Originally produced as part of a governmental project on IPv6 security
 • Maintenance and extension taken over by SI6 Networks

• Goals:
 • Security assessment and trouble-shooting of IPv6 networks and implementations
 • Clean, portable, and secure code
 • Good documentation
SI6 Networks' IPv6 Toolkit (II)

- Supported OSes:
 - Linux, FreeBSD, NetBSD, OpenBSD, OpenSolaris, and Mac OS
- License:
 - GPL (free software)
- Home:
- Collaborative development:
 - https://www.github.com/fgont/ipv6toolkit.git
SI6 Networks' IPv6 Toolkit: Philosophy

“an interface between your ideas and an IPv6 network”
SI6 Networks' IPv6 Toolkit: Tools

- ns6
- na6
- rs6
- ra6
- addr6
- path6
- rd6
- scan6
- frag6
- tcp6
- script6
- blackhole6
- icmp6
- ni6
- flow6
- jumbo6
- udp6
IPv6 Extension Headers
IPv6 Extension Headers
Overview
IPv6's Next Header field

- Identifies the header/protocol type following this header.
- IPv6 options are included in “extension headers”
 - These headers sit between the IPv6 header and the upper-layer protocol
 - There may be multiple instances, of multiple extension headers, each with multiple options
- Hence, IPv6 follow a “header chain” type structure. e.g.,

![IPv6 Next Header Diagram]
IPv6 Extension Headers

General implications of Extension Headers
Processing the IPv6 header chain

- Large number of headers/options may have a negative impact on performance
- Many routers can only look into a few dozen bytes into the packet
- It is harder to spot e.g. layer-4 information (if at all possible)
Fragmentation deemed as 'insecure'

• DoS vector:
 • Some are afraid about stateful-ness of IPv6 fragments

• Evasion:
 • It becomes harder (if at all possible) to implement ACLs

• Buggy implementations:
 • e.g. some boxes crash when a malformed fragment traverses it
IPv6 Extension Headers
In The Real World
IPv6 Fragmentation and EH reliability

- Operators filter them, as a result of:
 - Perceived issues with IPv6 Fragmentation and EH
 - Almost no current dependence on them
- IPv6 Extension Headers result in unreliability
WIPv6LD dataset: Packet Drop rate

- Webservers
- Mailservers
- Nameservers

- DO8
- HBH8
- FH512
WIPv6LD dataset: Drops by diff. AS

- Web servers
- Mail servers
- Name servers

DO8
HBH8
FH512
Alexa dataset: Packet Drop rate

- Webservers
- Mailservers
- Nameservers

- DO8
- HBH8
- FH512
Alexa dataset: Drops by diff. AS
So... what does this all mean?

- Good luck with getting IPv6 EHs working in the Internet!
 - They are widely dropped
- IPv6 EHs “not that cool” for evasion, either
 - Chances are that you will not even hit your target
IPv6 Extension Headers
Fragment Header
IPv6 Fragmentation Overview

- IPv6 fragmentation performed only by hosts (never by routers)
- Fragmentation support implemented in “Fragmentation Header”

<table>
<thead>
<tr>
<th>8 bits</th>
<th>8 bits</th>
<th>13 bits</th>
<th>2b</th>
<th>1b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next Header</td>
<td>Reserved</td>
<td>Fragment Offset</td>
<td>Res</td>
<td>M</td>
</tr>
</tbody>
</table>

where:
- Fragment Offset: Position of this fragment with respect to the start of the fragmentable part
- M: “More Fragments”, as in IPv4
- “Identification”: Identifies the packet (with Src IP and Dst IP)
Fragmentation: Example

- **ping6 -s 1800 2004::1**

 PING 2004::1(2004::1) 1800 data bytes
 1808 bytes from 2004::1: icmp_seq=1 ttl=64 time=0.973 ms
 --- 2004::1 ping statistics ---
 1 packets transmitted, 1 received, 0% packet loss, time 0ms
 rtt min/avg/max/mdev = 0.973/0.973/0.973/0.000 ms

- **tcpdump output:**

 20:35:27.232273 IP6 2004::5e26:aff:fe33:7063 > 2004::1: frag (0|1448) ICMP6, echo request, seq 1, length 1448

 20:35:27.233133 IP6 2004::1 > 2004::5e26:aff:fe33:7063: frag (0|1232) ICMP6, echo reply, seq 1, length 1232

IPv6 “atomic” fragments

- ICMPv6 PTB < 1280 triggers inclusion of a FH in all packets to that destination (not actual fragmentation)
- Result: IPv6 atomic fragments (Frag. Offset=0, More Frag.=0)
Issues with IPv6 atomic fragments

- Some implementations mix “atomic fragments” with queued fragments
- Atomic fragments thus become subject of IPv6 fragmentation attacks
- How to leverage this issue:
 - Trigger atomic fragments with ICMPv6 PTB messages
 - Now perform IPv6 fragmentation-based attacks
Processing of IPv6 atomic fragments

- Atomic fragment do not need to be mixed with other fragments – they are **atomic**!
- Skipping the normal reassembly procedure eliminates fragmentation-based attacks for such traffic
- RFC 6946 improves the handling of IPv6 atomic fragments:
 - They are required to be processed as non-fragmented traffic
Assessing support for atomic fragments

- Check response to atomic fragments

  ```
  # frag6 --frag-type atomic --frag-id 100 -d fc00:1::1
  ```

- Assess support for atomic fragments:

  ```
  # frag6 --frag-type first --frag-id 100 -d fc00:1::1
  # frag6 --frag-type atomic --frag-id 100 -d fc00:1::1
  ```
Generation of IPv6 atomic fragments

- If IPv6 frags are widely dropped... What if we triggered their generation?
 - Send an ICMPv6 PTB with an MTU<1280
 - The node will then generate IPv6 atomic fragments
 - Packets will get dropped

```
Original packet

NH=06
IPv6 Header

TCP Segment

Atomic fragment

NH=44
IPv6 Header

NH=60
Fragment Header

NH=36
TCP Segment
```
Attack Scenario #1

- Client communicates with a server
Attack Scenario #1 (II)

- Attacking client-server communications
Attack scenario #1 (II)

• Simple way to reproduce it:
 • Attack and client machine is the same one
 • So we attack our own “connections”
• Attack:
 • Test IPv6 connectivity:
 • Send an ICMPv6 PTB < 1280 to trigger atomic fragments
 sudo icmp6 --icmp6-packet-too-big -d
 2001:5c0:1000:a::a37 --mtu 1000 -o 80 -v
 • Test IPv6 connectivity again:
Generation of IPv6 atomic fragments

- RFC8021
 - Discusses the rationale for deprecating the generation of IPv6 atomic fragments in the upcoming revision of RFC2460
 - i.e. Hosts are not required to generated them in response to ICMPv6 PTB<1280
IPv6 Challenge
Testing

- Install the SI6 Networks IPv6 toolkit
- Test:
 - Processing of IPv6 atomic fragments (RFC6946)
 - Generation of IPv6 atomic fragments (RFC8021)
- Then:
 - Group #1: Document the testing process in an IETF Internet-Draft
 - Group #2: Implement support of such RFCs in open source OSes
Thanks!

Fernando Gont
fgont@si6networks.com

IPv6 Hackers mailing-list
http://www.si6networks.com/community/

www.si6networks.com